NeurlPS 2020 Tutorial

Offline Reinforcement Learning:

From Algorithms to Practical Challenges
Aviral Kumar, Sergey Levine(UC Berkeley)

Reviewed by Susang Kim



Reinforcement Learning is a branch of Machine Learning
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Reinforcement in Computer Vision

Challenges in high-dimensional observation. (e.g., image, unstructured, a large number of pixels)
The standard approach relies on sensors to obtain information that would be helpful for learning.

It's hard to use reinforcement learning algorithms to solve tasks using only low-level observations, such
as learning robotic control using only unstructured raw image data. (Robot Vision)
(by explicitly learning latent representations)

Learning from only image data is hard because the RL algorithm must learn both a useful representation
of the data and the task itself. (+representation learning problem)

The agent (cheetah) didn’t have any prior knowledge about movement.

‘ - - state = np.array([[np.nan, 1, 1, np.nan], # s0

[np.nan, 1, np.nan, 1], # s1
[np.nan, np.nan, 1, 1], #s2
[1,1, 1, np.nan], # s3

s3 s4 S5 [np.nan, np.nan, 1, 1], #s4

[1, np.nan, np.nan, np.nan], # s5
[1, np.nan, np.nan, np.nan], # s6
[1, 1, np.nan, np.nan], # s7, s8

GOAL ])

S6 | S7 S8

Sensor numerical data raw image data



Deep Reinforcement Learning in Object Detection
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Reinforcement learning vs Supervised Learning
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Practical Challenges

Al x Swing Robot - Hitachi : https://www.youtube.com/watch?v=g8i6wHCefU4
Deep Reinforcement Learning for Robotic Manipulation : https://youtu.be/ZhsEKTo7V04



https://www.youtube.com/watch?v=q8i6wHCefU4
https://youtu.be/ZhsEKTo7V04
http://www.youtube.com/watch?v=q8i6wHCefU4
http://www.youtube.com/watch?v=ZhsEKTo7V04

Reinforcement Learning
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RL Algorithms Overview
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RL Notations

P(Y N X)

P(Y|X) = P00

E[X] = Z p(x;)x;

E[Y|X =x] = Z p(Y =yilX = x)y;
i

1. 3772, 7y total reward of the trajectory.
2. Yoo, ry: reward following action a;.
3 Zf,".:t ry — b(s): baselined version of

previous formula.
4. Q™ (sy,ay): state-action value function.
5. A™(s;,ay): advantage function.

6. 7t + V7™(8¢41) — V™(8:): TD residual.

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

Symbol
ses
ac A
reR

Sb Ah Rt

Meaning
States.
Actions.
Rewards.

State, action, and reward at time step t of one trajectory. | may occasionally use
Sy @y, Ty as well.

Discount factor; penalty to uncertainty of future rewards; 0 < v < 1.
Return; or discounted future reward; G; = Zio YR it

Transition probability of getting to the next state s’ from the current state s with action
a and reward 7.

Stochastic policy (agent behavior strategy); mgy(. ) is a policy parameterized by 6.

Deterministic policy; we can also label this as 7(s), but using a different letter gives
better distinction so that we can easily tell when the policy is stochastic or deterministic
without further explanation. Either  or p is what a reinforcement learning algorithm
aims to learn.

State-value function measures the expected return of state s; V,,(. ) is a value function
parameterized by w.

The value of state s when we follow a policy m; V™(s) = Eqx[Gt|St = s].

Action-value function is similar to V(s), but it assesses the expected return of a pair of
state and action (s, a); Quw(. ) is a action value function parameterized by w.

Similar to V(. ), the value of (state, action) pair when we follow a policy m;

Q™ (s,a) = Eax[Gt|S: = s, A: = al.

Advantage function, A(s,a) = Q(s,a) — V|(s); it can be considered as another
version of Q-value with lower variance by taking the state-value off as the baseline.
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Markov Decision(Reward) Process
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Bellman (Optimal) Equation

V(s) = E[Reyq + YV (St41)| Se = s]

V(s¢) :I:= _IIZa_X‘.(R(at» st) + YV (St+1))

“optimal

v(8) = max vr(8),

V4 (8) = alen.,?x(s) qr. (s, Q)
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Policies and Objectives

could be ~x

\ discount factor

action: a
7

RL objective: nmxz B o (5 a,NT(aIb)[, r(st, ar)]

t=0

state distribution under 7

some definitions:

state: s

s € S  discrete or continuous state
reward: r(s.a)

ac A discrete or continuous action

T = {sp,a9.81,4,....S7,ar} tlrajectory
o
m(so0,ap, . . ., sr,ar) = p(s1) H m(ar[st)p(si+1lse, ar)
. ) (=0
7(T)

S92
p(Siq1lse.ar) U I)(St-HlshaI)

(lf(s,) — state marginal of 7#(7) at f

d™(s Z: V] (s¢) — “visitation frequency”



Policy Gradient in Practice

— training trajectory
T - = Ty expected trajectory

RL objective: max Z Ee,ndr(s),a;~n(als) ["/"tr(s"’ a;)|

t=0
/ exactly the same thing!

T N T
1
J(8) = Ernumo(r) gfw*r(st,at) ~ 2D (s a)

=1 t=0

VeJ(6) < > d™(s) > Q"(s,a)Vame(als)

REINFORCE algorithm: s€S acA o
> 1. sample {7} from 7mg(as|s;) (run the policy) = Zd"(s)ng(a|s)Qﬂ(s,a)_zﬁ(‘ir8|;)
¢ N P seS acA [}
2. Vo J(0) =, (Z, Vg log 7f9(at|S[)) (Z( (sf. &} ) = E,[Q"(s,a)VyInmy(a|s)]

3.0« 0+aVyeJ(0)



On-policy vs Off-Policy

On-policy : a single policy, require observations(state, action, reward, next state, ) to generate that policy.
Off-policy : two policies target policy and policy generates the observations(called the behaviour policy).

Value Based

Policy Based | Actor-Critic

On-Policy

Off-Policy

SARSA Oa,s) « Qa,s)+a-(r, + 7{ '

. ( \
Q-Learning  (O(a,s) <« QO(a,s)+a- (rs +ymax Q(a',s")—(a, s))
a_ - )
https://data-newbie.tistory.com/543 \aII actions(a’) were probed in state
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What does offline RL mean?

(a) online reinforcement learning  (b) off-policy reinforcement learning (c) offline reinforcement learning

rollout data {(s:. a;.s;,7:)} rollout data {(s:.a;,s;,7;)} {(s,.a,.sﬁ.r,-)}F |

1
| |
[ &% | :
k Uy’ |
P :
rOllOUt(s) I'O”OUt(S) I

datacollected once w= == == == = |

with any policy training phase

Online RL : Agent collects data each time it is trained.(modified), either uses narrow datasets (e.g.,
collected in one environment) or or manually designed simulators (using its own (partially trained) policy).
Generalization can be poor due to small, narrow datasets, or simulators that differ from reality

Off-policy RL : Old data is retained, and new data is still collected periodically as the policy changes.
Offline RL : RL algorithms that can learn from prior data (the data is collected once - supervised learning)
and is then used to train optimal policies without any additional online data collection. the policy is deployed

to collect additional data to improve online. utilize large and diverse datasets only practical to collect once

The scale of ImageNet or MS-COCO, which capture a wide slice of real-world situations.



Advantage Actor Critic (A2C) algorithm

— Environment

Reward r,

State s, [

Action a,

VW(Sf;) = Est-f-l:oo:

At:oo

oC
E Tt

1=0
AW(St,Gg) = Qw(st; at) - Vﬂ(st)’

Actor-critic methods consist of two models, which may optionally
share parameters:

Critic updates the value function parameters w and depending on
the algorithm it could be action-value
Q(als) or state-value V(s).

Actor updates the policy parameters 8 for pi6(a|s) in the direction
suggested by the critic.

Asynchronous Advantage Actor-Critic (Mnih et al., 2016), short for
A3C, is a classic policy gradient method with a special focus on
parallel training.

At 4l:00

o0
Qﬂ-(Sf, at) = E3t+1:ao1 Z rt""
1=0

(Advantage function).



Open Al Gym (Pendulum)

Action Space Box(-2.0, 2.0, (1,), float32) B

Observation Shape (3,)

Observation High [1.1.8] =
Observation Low [=1.:4_ -8] ‘ ’

Position (m)

Import gym.make("Pendulum-v1")

GO,_.O O OOOBOA %

D ‘e

Action Space Num Action Min Max §

0 Torque -2.0 20 e
Observation Space = Num  Observation  Min Max Position D is zero position
0 X = cos(theta) -1.0 1.0
, Rewards :

1 y = sin(angle) -1.0 1.0

2 AngularVelocity -80 80 r = -(theta® + 0.1 * theta_dt* + 0.001 * torque®)

Theta is normalized between -pi and pi. Therefore, the lowest cost is -(pi*2 + 0.18"2 + 0.0012*2) = -16.2736044, and the
highest cost is 0. In essence, the goal is to remain at zero angle (vertical), with the least rotational velocity, and the least effort.

https://ai-mrkogao.github.io/openai/pendulum/
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Actor-Critic Code

ss Actor(Model): -lass Critic(Model):

f _init_ (self, action_dim, action bound): : init 1) -
super(Actor, self). init () _1n1 _.(S? ): .
self.action_bound = action_bound super(Critic, self)._ init ()

self.hl = Dense(64, activation="relu") self.h1l = Dense(64, activation="relu")

self.h2 = Dense(32, activation='relu’) self.h2 Dense(32, activation="relu')
self.h3 = Dense(16, activation="relu’) selb b

self.mu = Dense(action dim, activation="tanh")
self.std = Dense(action dim, activation='softplus")

Dense(16, activation="relu’)
self.v = Dense(1, activation="linear")

f call(self, state): def call(self, state):
= self.hi(state) = self.hi(state)
self.h2(x) = self.h2(x)

self.h3(x) B
mu = self.mu(x) = self.h3(x)

std = self.std(x) = self.v(x)
return v

mu = Lambda(lambda x: x*self.action bound)(mu)

return [mu, std]




Actor-Critic Code

get_action(self, state): next v values = self.critic(tf.convert to tensor(next states, dtype=tf.float32))
mu_a, std a = self.actor(state) td_targets

mu_a = mu_a.numpy()[0]

std a = std a.numpy()[@]

std a = np.clip(std a, self.std bound[©], self.std bound[1])
action = np.random.normal(mu a, std a, size=self.action dim)
return action

= self.td target(train_rewards, next v values.numpy(), dones)

self.critic_learn(tf.convert to tensor(states, dtype=tf.float32),
tf.convert to tensor(td targets, dtype=tf.float32))

v_values = self.critic(tf.convert to_tensor(states, dtype=tf.float32))
next_v_values = self.critic(tf.convert_to_tensor(next_states, dtype=tf.float32))
- actor_learn(self, states, actions, advantages):| advantages = train_rewards + self.GAMMA * next v values - v_values
with tf.GradientTape() as tape:

self.actor _learn(tf.convert to tensor(states, dtype=tf.float32),
tf.convert_to tensor(actions, dtype=tf.float32),
tf.convert_to tensor(advantages, dtype=tf.float32))

mu_a, std a = self.actor(states, training=True)
log policy pdf = self.log pdf(mu_a, std a, actions)

loss policy = log policy pdf * advantages

loss = tf.reduce_sum(-loss policy) state = next_state[0]
episode reward += reward[0]
time += 1

grads = tape.gradient(loss, self.actor.trainable variables)
self.actor_opt.apply gradients(zip(grads, self.actor.trainable variables))

critic _learn(self, states, td targets):
with tf.GradientTape() as tape:
td hat = self.critic(states, training=True)
loss = tf.reduce mean(tf.square(td targets-td hat))




Training Asynchronous Advantage Actor-Critic (A3C)

[
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Soft Actor Critic(SAC)

SAC learns two Q-networks, a V-network, and a policy network. Two Q-networks are used to mitigate overestimation bias.
A V-network is used to stabilize training. Taking gradients through the expectations is done using the reparameterization trick
Off-Policy(DDPG: ICLR 2016)+Soft Bellman(Soft Q-Learning: ICML 2017) + Stable Actor-Critic(TD3:ICML 2018)

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors 1, W, 6, 0.
for each iteration do

for each environment step do -

a; ~ my(ag|st)

]
|
St+1 ~ P(S¢r1/8¢, at) !
D <+ DU {(st,as, r(s¢,ar),8e41)} 1
end for :
\

_____________________________

end for
end for

_____
________

=1 (xij_ 7)) —,,w<xl>+ag<xb}}i,"7}§lrN<0 D

— o e e e e R mmn e e M M e M Mmm M e M M M e e M M e R M e e
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Thanks

Any Questions?

You can send mail to
Susang Kim(healess1@amail.com)
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