NeurlPS 2020 Tutorial

Offline Reinforcement Learning:

From Algorithms to Practical Challenges
Aviral Kumar, Sergey Levine(UC Berkeley)

Reviewed by Susang Kim

Reinforcement Learning is a branch of Machine Learning

Structure Image
4

Customer Retenton
Discovery Chassification

‘e .,
Setse
o o Meaningf
Meaningtu
R = .
R Compression
ot % ey
e 15 1
e

Big data

- F -
) Idenity Fraud Diagnosuics
Visualistaior Detection

Advertising Popularicy

Unsupervised Supervised o
Learning Learning Weather

Farecasung

Recommender
c

Clustering

Machine Y=
Learning

Market

Forecastin
Predicuon $
Estimating

e expectancy

Reinforcement
. Learning Bl

https://box-world.tistory.com/5

https://box-world.tistory.com/5

Reinforcement in Computer Vision

Challenges in high-dimensional observation. (e.g., image, unstructured, a large number of pixels)
The standard approach relies on sensors to obtain information that would be helpful for learning.

It's hard to use reinforcement learning algorithms to solve tasks using only low-level observations, such
as learning robotic control using only unstructured raw image data. (Robot Vision)
(by explicitly learning latent representations)

Learning from only image data is hard because the RL algorithm must learn both a useful representation
of the data and the task itself. (+representation learning problem)

The agent (cheetah) didn’t have any prior knowledge about movement.

‘ - - state = np.array([[np.nan, 1, 1, np.nan], # s0

[np.nan, 1, np.nan, 1], # s1
[np.nan, np.nan, 1, 1], #s2
[1,1, 1, np.nan], # s3

s3 s4 S5 [np.nan, np.nan, 1, 1], #s4

[1, np.nan, np.nan, np.nan], # s5
[1, np.nan, np.nan, np.nan], # s6
[1, 1, np.nan, np.nan], # s7, s8

GOAL])

S6 | S7 S8

Sensor numerical data raw image data

Deep Reinforcement Learning in Object Detection

Action for BBox tranformation

CNN DRL
Backbone Agent
Environment State Backbone Reward
Image with Cropped Image To extract Improvement in IOU

present BBox around the BBox jmage features

Action to shift the ROI

CNN
Backbone

S

State

Cropped ROI around
the landmark

Backbone
To extract

Environment

Image with ROI
around the present
landmark location

DRL
Agent

Reward

N

UP

0
* DOWN

=) RIGHT
<€ LEFT

<= FATTER

t TALLER

S

Actions

fup

* DOWN

= RIGHT

<= LEFT

Actions

Improvement in distance Generated using
image features between ground truth Q-values predicted
and predicted landmark

by the Agent

DRL implementation for object detection
to maximize the improvement in |OU.
DRL used a tuple of feature vector and
history of actions for state and change in
IOU across actions as a reward.

DRL implementation for landmark detection,
Red box is the Rol to maximize the reward
corresponding to the improvement in
distance between the ground truth and
predicted landmark location.

Reinforcement learning vs Supervised Learning

- @OpenAI

Mnih et al. ‘13

- : 2 _fi‘;v & R [Y / Y / \
- , | this is done | | . \7‘—. \/ N \/
Schulman et al. "14 & ‘15 many times . . : " 3
i 8, \ . & y
¢ e t -t‘ t

& g -

Levine¥, Flnn* etal. ‘16 ﬂ Deelend
. .-. “:.

enormous gulf

Practical Challenges

Al x Swing Robot - Hitachi : https://www.youtube.com/watch?v=g8i6wHCefU4
Deep Reinforcement Learning for Robotic Manipulation : https://youtu.be/ZhsEKTo7V04

https://www.youtube.com/watch?v=q8i6wHCefU4
https://youtu.be/ZhsEKTo7V04
http://www.youtube.com/watch?v=q8i6wHCefU4
http://www.youtube.com/watch?v=ZhsEKTo7V04

Reinforcement Learning

Q Q (3)
’J Agent ||
state| |reward action
Sr Rz A[
o Rt+l (
” <z Environment [<e———
24 \
= o
22\
g : ,
; 19 v
: o o
16 — — —
T T T Y R R R L E T X" r(S7a)_E[Rt+1|St_S, At_a]
Frame #
Rollout policy SL policy network RL policy network Value network Policy network Value network
z * o
P, P, P, v @ P, (als) v, (8) — [()
5 ; V'(x,) =max V*(x,
3 /i
2
Policy gradient S L
e Y oo,

gy

Q*(XI, U/) :m?XQz(Xr, Uz)

Human expert positions Self-play positions . s J(9) — E: ~ po(7) [Z 7[r (X[- U[)]
t=0

Policy and Value Networks

ky

!
9

https://opendatascience.com/deep-learning-research-review-week-2-reinforcement-learning/

https://opendatascience.com/deep-learning-research-review-week-2-reinforcement-learning/

RL Algorithms Overview

[RL Algorithms]
l

. .
[MDP] [Bandits]
| |
v v) v
Model-Based Model-Free Action-Value Gradient Bandit
(DP, etc) (TD, MC, etc) Methods Methods
—'[Given the Model] l l
MCTS (AlphaGo / [Value-Based] [Policy-Based]
Mante Carlo AlphaZero) — - I l a
Trge Search [On-Policy] Off-Policy [Gradient-Free] [Gradient-Based]
~»[Learn the Model] T
_____ S ¥ v
L[Sarsa] Q-Learning | [Cross-Entropy Method] [Evolution Strategy] 4{ Policy Gradient]
World Model SAMUEL TRPO/PPO
ACKTR

A2C/A3C |!

https://adabhishekdabas.medium.com/rl-world-3fc4dc38a73d

https://adabhishekdabas.medium.com/rl-world-3fc4dc38a73d

RL Notations

P(Y N X)

P(Y|X) = P00

E[X] = Z p(x;)x;

E[Y|X =x] = Z p(Y =yilX = x)y;
i

1. 3772, 7y total reward of the trajectory.
2. Yoo, ry: reward following action a;.
3 Zf,".:t ry — b(s): baselined version of

previous formula.
4. Q™ (sy,ay): state-action value function.
5. A™(s;,ay): advantage function.

6. 7t + V7™(8¢41) — V™(8:): TD residual.

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

Symbol
ses
ac A
reR

Sb Ah Rt

Meaning
States.
Actions.
Rewards.

State, action, and reward at time step t of one trajectory. | may occasionally use
Sy @y, Ty as well.

Discount factor; penalty to uncertainty of future rewards; 0 < v < 1.
Return; or discounted future reward; G; = Zio YR it

Transition probability of getting to the next state s’ from the current state s with action
a and reward 7.

Stochastic policy (agent behavior strategy); mgy(.) is a policy parameterized by 6.

Deterministic policy; we can also label this as 7(s), but using a different letter gives
better distinction so that we can easily tell when the policy is stochastic or deterministic
without further explanation. Either or p is what a reinforcement learning algorithm
aims to learn.

State-value function measures the expected return of state s; V,,(.) is a value function
parameterized by w.

The value of state s when we follow a policy m; V™(s) = Eqx[Gt|St = s].

Action-value function is similar to V(s), but it assesses the expected return of a pair of
state and action (s, a); Quw(.) is a action value function parameterized by w.

Similar to V(.), the value of (state, action) pair when we follow a policy m;

Q™ (s,a) = Eax[Gt|S: = s, A: = al.

Advantage function, A(s,a) = Q(s,a) — V|(s); it can be considered as another
version of Q-value with lower variance by taking the state-value off as the baseline.

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

Markov Decision(Reward) Process
1,
[-)) s T'search

P(s¢s1lst) = P(St411Se) St—1) -5 So)

'_| Agent '

recharge

state| |reward action
SI Rt At Oy Tsearch -0, Tsearch it
§ Rhl (.
;4' s.. | Environment]4_ Recycling robot example.
; y s a 5 p(s’|s,a) | r(s,a,s")
The agent—environment interaction in a Markov decision process. TiEh meexch e | Yapaxch
high search low l=o T'search
SO,AO,R],S[,fl]_,RQ,SQ,}l'Z,Rg,... Low — hlgh 1_'8 =0
low search low ¥ T'search
‘ high wait high | 1 Twait
Gy = Ryy1 + Ryyo + Ryy3+--- + Ry,
5 R e et & high wait low 0 Tyait
o low wait high | 0 Twait
. 2 k i e
Gy = Ry +yRyyo +7 " Ryyz+-++ = Z ¥ Revrn, Tow malt l?w 1 Twait
o low recharge high | 1 0
B low recharge 1low | O 0.

Bellman (Optimal) Equation

V(s) = E[Reyq + YV (St41)| Se = s]

V(s¢) :I:= _IIZa_X‘.(R(at» st) + YV (St+1))

“optimal

v(8) = max vr(8),

V4 (8) = alen.,?x(s) qr. (s, Q)

= ma.XIEm[Gt | StZS, At:a]

a
= mC?X]EW*[Rt-i-l +7Gt41 | Si=s5,A;=q]
= mC?XE[Rt+1 +’)”U*(St+1) l StZS,At :a]

= mfop(s',ﬂs,a) [7 + v ()]

8l

g« (s, a) i:’m;xx\llq7r (g,az),

—_——

Al |By 22.0/24.4/22.0[19.4{17.5 > <—I—> “ +1—> —
+5 19.8/22.0/19.8/17.8]16.0 [o P R
0| | B' 17.8/19.8/17.8{16.0|14.4 £ e o O O O
16.0/17.8/16.0{14.4)13.0 A | W |
A’f 14.4016.0{14.4{13.0{11.7 Bl 4 letlshld
Gridworld Vi T %
S
taken with - Un (S)
probability 7(a|s) =,
[} 2] ® <__S“_Q7r(3, a’)
a a2
S

gi(s;a) = IE[RH.l 4 fymelqu*(SHl,a’) ' St =8, A= a]

= Y p(s,r]s,a) [T + v max g (s, a’)] :

8l.r

rewardsib
B

Policies and Objectives

could be ~x

\ discount factor

action: a
7

RL objective: nmxz B o (5 a,NT(aIb)[, r(st, ar)]

t=0

state distribution under 7

some definitions:

state: s

s € S discrete or continuous state
reward: r(s.a)

ac A discrete or continuous action

T = {sp,a9.81,4,....S7,ar} tlrajectory
o
m(so0,ap, . . ., sr,ar) = p(s1) H m(ar[st)p(si+1lse, ar)
.) (=0
7(T)

S92
p(Siq1lse.ar) U I)(St-HlshaI)

(lf(s,) — state marginal of 7#(7) at f

d™(s Z: V] (s¢) — “visitation frequency”

Policy Gradient in Practice

— training trajectory
T - = Ty expected trajectory

RL objective: max Z Ee,ndr(s),a;~n(als) ["/"tr(s"’ a;)|

t=0
/ exactly the same thing!

T N T
1
J(8) = Ernumo(r) gfw*r(st,at) ~ 2D (s a)

=1 t=0

VeJ(6) < > d™(s) > Q"(s,a)Vame(als)

REINFORCE algorithm: s€S acA o
> 1. sample {7} from 7mg(as|s;) (run the policy) = Zd"(s)ng(a|s)Qﬂ(s,a)_zﬁ(‘ir8|;)
¢ N P seS acA [}
2. Vo J(0) =, (Z, Vg log 7f9(at|S[)) (Z((sf. &}) = E,[Q"(s,a)VyInmy(a|s)]

3.0« 0+aVyeJ(0)

On-policy vs Off-Policy

On-policy : a single policy, require observations(state, action, reward, next state,) to generate that policy.
Off-policy : two policies target policy and policy generates the observations(called the behaviour policy).

Value Based

Policy Based | Actor-Critic

On-Policy

Off-Policy

SARSA Oa,s) « Qa,s)+a-(r, + 7{ '

. (\
Q-Learning (O(a,s) <« QO(a,s)+a- (rs +ymax Q(a',s")—(a, s))
a_ -)
https://data-newbie.tistory.com/543 \aII actions(a’) were probed in state

https://data-newbie.tistory.com/543

What does offline RL mean?

(a) online reinforcement learning (b) off-policy reinforcement learning (c) offline reinforcement learning

rollout data {(s:. a;.s;,7:)} rollout data {(s:.a;,s;,7;)} {(s,.a,.sﬁ.r,-)}F |

1
| |
[&% | :
k Uy’ |
P :
rOllOUt(s) I'O”OUt(S) I

datacollected once w= == == == = |

with any policy training phase

Online RL : Agent collects data each time it is trained.(modified), either uses narrow datasets (e.g.,
collected in one environment) or or manually designed simulators (using its own (partially trained) policy).
Generalization can be poor due to small, narrow datasets, or simulators that differ from reality

Off-policy RL : Old data is retained, and new data is still collected periodically as the policy changes.
Offline RL : RL algorithms that can learn from prior data (the data is collected once - supervised learning)
and is then used to train optimal policies without any additional online data collection. the policy is deployed

to collect additional data to improve online. utilize large and diverse datasets only practical to collect once

The scale of ImageNet or MS-COCO, which capture a wide slice of real-world situations.

Advantage Actor Critic (A2C) algorithm

— Environment

Reward r,

State s, [

Action a,

VW(Sf;) = Est-f-l:oo:

At:oo

oC
E Tt

1=0
AW(St,Gg) = Qw(st; at) - Vﬂ(st)’

Actor-critic methods consist of two models, which may optionally
share parameters:

Critic updates the value function parameters w and depending on
the algorithm it could be action-value
Q(als) or state-value V(s).

Actor updates the policy parameters 8 for pi6(a|s) in the direction
suggested by the critic.

Asynchronous Advantage Actor-Critic (Mnih et al., 2016), short for
A3C, is a classic policy gradient method with a special focus on
parallel training.

At 4l:00

o0
Qﬂ-(Sf, at) = E3t+1:ao1 Z rt""
1=0

(Advantage function).

Open Al Gym (Pendulum)

Action Space Box(-2.0, 2.0, (1,), float32) B

Observation Shape (3,)

Observation High [1.1.8] =
Observation Low [=1.:4_ -8] ‘ ’

Position (m)

Import gym.make("Pendulum-v1")

GO,_.O O OOOBOA %

D ‘e

Action Space Num Action Min Max §

0 Torque -2.0 20 e
Observation Space = Num Observation Min Max Position D is zero position
0 X = cos(theta) -1.0 1.0
, Rewards :

1 y = sin(angle) -1.0 1.0

2 AngularVelocity -80 80 r = -(theta® + 0.1 * theta_dt* + 0.001 * torque®)

Theta is normalized between -pi and pi. Therefore, the lowest cost is -(pi*2 + 0.18"2 + 0.0012*2) = -16.2736044, and the
highest cost is 0. In essence, the goal is to remain at zero angle (vertical), with the least rotational velocity, and the least effort.

https://ai-mrkogao.github.io/openai/pendulum/

https://ai-mrkogao.github.io/openai/pendulum/

Actor-Critic Code

ss Actor(Model): -lass Critic(Model):

f _init_ (self, action_dim, action bound): : init 1) -
super(Actor, self). init () _1n1 _.(S?): .
self.action_bound = action_bound super(Critic, self)._ init ()

self.hl = Dense(64, activation="relu") self.h1l = Dense(64, activation="relu")

self.h2 = Dense(32, activation='relu’) self.h2 Dense(32, activation="relu')
self.h3 = Dense(16, activation="relu’) selb b

self.mu = Dense(action dim, activation="tanh")
self.std = Dense(action dim, activation='softplus")

Dense(16, activation="relu’)
self.v = Dense(1, activation="linear")

f call(self, state): def call(self, state):
= self.hi(state) = self.hi(state)
self.h2(x) = self.h2(x)

self.h3(x) B
mu = self.mu(x) = self.h3(x)

std = self.std(x) = self.v(x)
return v

mu = Lambda(lambda x: x*self.action bound)(mu)

return [mu, std]

Actor-Critic Code

get_action(self, state): next v values = self.critic(tf.convert to tensor(next states, dtype=tf.float32))
mu_a, std a = self.actor(state) td_targets

mu_a = mu_a.numpy()[0]

std a = std a.numpy()[@]

std a = np.clip(std a, self.std bound[©], self.std bound[1])
action = np.random.normal(mu a, std a, size=self.action dim)
return action

= self.td target(train_rewards, next v values.numpy(), dones)

self.critic_learn(tf.convert to tensor(states, dtype=tf.float32),
tf.convert to tensor(td targets, dtype=tf.float32))

v_values = self.critic(tf.convert to_tensor(states, dtype=tf.float32))
next_v_values = self.critic(tf.convert_to_tensor(next_states, dtype=tf.float32))
- actor_learn(self, states, actions, advantages):| advantages = train_rewards + self.GAMMA * next v values - v_values
with tf.GradientTape() as tape:

self.actor _learn(tf.convert to tensor(states, dtype=tf.float32),
tf.convert_to tensor(actions, dtype=tf.float32),
tf.convert_to tensor(advantages, dtype=tf.float32))

mu_a, std a = self.actor(states, training=True)
log policy pdf = self.log pdf(mu_a, std a, actions)

loss policy = log policy pdf * advantages

loss = tf.reduce_sum(-loss policy) state = next_state[0]
episode reward += reward[0]
time += 1

grads = tape.gradient(loss, self.actor.trainable variables)
self.actor_opt.apply gradients(zip(grads, self.actor.trainable variables))

critic _learn(self, states, td targets):
with tf.GradientTape() as tape:
td hat = self.critic(states, training=True)
loss = tf.reduce mean(tf.square(td targets-td hat))

Training Asynchronous Advantage Actor-Critic (A3C)

[

-250

-500

=750

1000

-1250

-1500

-1750

o 200 400 600 800 1000

A3C : Worker 1
(MLP : Sharing Parameter)

-250

—=500 1

-750

-1000

-1250

-1500

-1750

0 200 400 600 800 1000

A3C : Worker 1
(MLP : Not Sharing Parameter)

-250

-500

=750

-1000

-1250

-1500

-1750

600 800 1000

A3C : Worker 8
(MLP : 64,32,16)

~

Training in parallel

Training in parallel

-
Convolutional Layers

Agent 1
Agent 2
Global Global
Network Network Coordinator
Parameters Parameters Agent3
Agentn
A3C (Async) A2C (Sync)
/ Critic
————————. .‘. V
. ciiic . i (=
- I v i g
\\ LV’ / _/
7 Actor |
// Actor
J L e) 7 m
e S,
Dense Layers ~J
/ (agsy)
— =1
=2 B 5

Convolutional Layers Dense Layers

Soft Actor Critic(SAC)

SAC learns two Q-networks, a V-network, and a policy network. Two Q-networks are used to mitigate overestimation bias.
A V-network is used to stabilize training. Taking gradients through the expectations is done using the reparameterization trick
Off-Policy(DDPG: ICLR 2016)+Soft Bellman(Soft Q-Learning: ICML 2017) + Stable Actor-Critic(TD3:ICML 2018)

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors 1, W, 6, 0.
for each iteration do

for each environment step do -

a; ~ my(ag|st)

]
|
St+1 ~ P(S¢r1/8¢, at) !
D <+ DU {(st,as, r(s¢,ar),8e41)} 1
end for :
\

end for
end for

=1 (xij_ 7)) —,,w<xl>+ag<xb}}i,"7}§lrN<0 D

— o e e e e R mmn e e M M e M Mmm M e M M M e e M M e R M e e

References

Offline RL Tutorial - NeurlPS 2020 : https://sites.google.com/view/offlinerltutorial-neurips2020/home

A3C Code : GitHub - pasus/Reinforcement-Learning-Book-Revision

Pendulum https://www.gymlibrary.dev/environments/classic control/pendulum/

Reinforcement Learning: An Introduction : http://incompleteideas.net/book/bookdraft2017nov5.pdf

Deep Reinforcement Learning in Computer Vision: A Comprehensive Survey https://arxiv.org/abs/2108.11510

Policy Gradient Algorithms https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

Decisions from Data: How Offline Reinforcement Learning Will Change How We Use Machine Learning
https://medium.com/@sergey.levine/decisions-from-data-how-offline-reinforcement-learning-will-change-how-we-use-ml-24d98c
b069b0

Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor."
International conference on machine learning. PMLR, 2018.

https://sites.google.com/view/offlinerltutorial-neurips2020/home
https://github.com/pasus/Reinforcement-Learning-Book-Revision
https://www.gymlibrary.dev/environments/classic_control/pendulum/
http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://arxiv.org/abs/2108.11510
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://medium.com/@sergey.levine/decisions-from-data-how-offline-reinforcement-learning-will-change-how-we-use-ml-24d98cb069b0
https://medium.com/@sergey.levine/decisions-from-data-how-offline-reinforcement-learning-will-change-how-we-use-ml-24d98cb069b0

Thanks

Any Questions?

You can send mail to
Susang Kim(healess1@amail.com)

mailto:healess1@gmail.com

